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1. Introduction and summary

In the past few months, the use of the AdS/CFT correspondence [1 – 3] to study energy loss

in finite-temperature strongly-coupled gauge theories has attracted significant attention,

partly because it is hoped that this line of research could eventually make contact with

experimental data from RHIC [4] and ALICE [5].

The drag force experienced by a heavy quark that moves through a thermal N = 4

super-Yang-Mills (SYM) plasma was determined in [6, 7], using its dual description as

a string that moves on an AdS-Schwarzschild background. The same information was

obtained independently in [8] through a different method, based on an analysis of small

string fluctuations (a similar calculation was performed in [6]). Generalizations of the first

calculation may be found in [9 – 11]. A comparison with the corresponding weakly-coupled

result was carried out in [12]. The connection with magnetic confinement was explored

in [13]. The directionality of the coherent wake left by the moving quark on the gluonic

fields was studied in [14 – 16], using the methods of [17, 18].

An independent approach has aimed at determining the jet-quenching parameter q̂ that

in phenomenological models of energy loss through medium-induced radiation is meant to

codify the average squared transverse momentum transferred to the quark by the medium

(for reviews see [19, 20]). Based on the fact that certain approximate calculations in

these models relate q̂ to a lightlike Wilson loop in the adjoint representation (see [20] and

references therein), the authors of [21] suggested that this Wilson loop could be taken to

provide a non-perturbative definition of the jet-quenching parameter. Using the simple

large-N relation between adjoint and fundamental loops, and the AdS/CFT recipe for

the latter1 [23], they then proceeded to compute this parameter for N = 4 SYM. Their

calculation has been generalized in various directions in [24, 25, 11, 28 – 30]. Previous

related work may be found in [26, 27].

Just like the drag force determination in [6, 7], the calculation of q̂ in [21] focuses

on a string that moves on an AdS-Schwarzschild background. The difference is that the

1An AdS/CFT prescription for directly computing certain Wilson loops in an arbitrary representation

of the gauge group was given recently in [22].
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string considered in [6, 7] has a single endpoint on the boundary, representing the moving

external quark, whereas the string studied in [21] has both of its endpoints on the boundary,

representing an external quark-antiquark pair that traces out the required lightlike Wilson

loop.

In this paper we perform a natural generalization of the above calculations, using the

AdS/CFT correspondence to determine the energy of a quark-antiquark pair that moves

with velocity v through a strongly-coupled thermal N = 4 SYM plasma. This problem had

been previously studied in the case v = 0, where the pair is static with respect to the plasma.

As expected, the quark-antiquark potential was found to be insensitive to the plasma

at small distances, and to display screening behavior beyond a certain length [31, 32].

Analyzing the manner in which these features are modified by the motion of the pair

through the plasma is an interesting question in its own right, both from the theoretical and

the phenomenological perspectives. Our analysis is additionally motivated by the current

discussion on energy loss: the moving quark-antiquark pair serves as a color-neutral probe

of the plasma that stands in useful contrast with the solitary quark considered in [6, 7],

and moreover, in the v → 1 limit it would be expected to make contact with the system

studied in [21].

Our presentation is organized as follows. In section 2 we briefly review the salient points

of the drag force calculation of [6, 7], and then set up and study the analogous problem for

the string on AdS-Schwarzschild that has both of its endpoints on the boundary, satisfying

the boundary conditions (2.11). Below this equation and again after (2.19) we find that

this string feels no drag force, discuss the physical reasons for this result and point out that

there exist configurations with the same boundary conditions but different initial conditions

where the string does experience a drag force. Although framed in the specific context of the

background dual to N = 4 SYM, the essence of our arguments is more general and applies

to other backgrounds. At the end of section 2 we derive the basic equations (2.20)-(2.32)

that determine the shape and energy of the string in the background at hand. We work

first in the frame where the plasma is at rest, and discuss a subtlety in defining the energy

(and momentum) of the disconnected strings dual to an unbound quark and antiquark. We

then Lorentz-transform to the frame where the qq̄ pair is at rest, where the energy can be

defined in the standard straightforward manner. We note that even though the string is by

definition static in this frame, it still carries momentum, which as we explain below (3.5)

codifies information about the momentum density of the gluonic field configuration set up

by the quarks in the dual gauge theory. Because of this non-vanishing momentum, the

energy E in the plasma rest frame is not simply proportional to the energy Ē in the pair

rest frame. The relation between the two is given in (3.6).

Section 3 contains our main results, in SYM language. We open with a discussion

on the gauge-theoretic interpretation for the result that the quark-antiquark pair feels no

drag force as it ploughs through the N = 4 SYM plasma. After that we carry out the

numerical integrations needed to determine the energy of the qq̄ pair as a function of the

separation L and velocity v. The results are shown in figures 3), (4. The energy reduces

to the expected Coulombic behavior (3.12) for small separations, and then rises above this

behavior due to the effects of the plasma, up to a screening length L∗(v) beyond which the
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quark and antiquark become unbound. The velocity-dependence of this screening length

is shown in figure 5; we find it to be well-approximated by (3.18). For velocities v > 0.447

we find a gap in energy between the bound and unbound qq̄ configurations, whose physical

significance remains unclear to us.

In the closing pages of section 3 we discuss at length the relation between the v → 1

limit of our results and the lightlike Wilson loop proposed in [21] as a definition of the

jet-quenching parameter q̂. The main lesson is that the AdS/CFT result of [21] cannot be

obtained as a smooth limit of standard Wilson loops (2.11) with v → 1 from below. We

suggest that it should be regarded instead as arising from an approach to v = 1 from above.

Finally, we note in (3.22) that, despite the fact that one cannot continuously interpolate

between the spacelike worldsheet considered in [21] and the timelike worldsheets studied in

the present paper, the E ∝ L2 dependence that is central to the definition of the parameter

q̂ in [21] is in fact available in the v → 1 limit of a subset of the configurations analyzed

here. By analogy with [21], one can then define a parameter K that, at least in this specific

example, captures exactly the same information as (and is in close numerical agreement

with) q̂.

In the course of our investigation two related papers were posted on the arXiv. While

our work was in progress, the paper [33] appeared, whose section 4.2 discusses drag effects

for mesons with spin in a certain confining non-supersymmetric gauge theory, arriving

at conclusions which coincide with those of our section 2. While the first version of our

paper was in preparation, the work [34] appeared, which analyzes exactly the same quark-

antiquark system as we do, focusing on the velocity-dependence of the screening length (for

an arbitrary angle θ between the direction of motion and the quark-antiquark separation L),

which we determine (for θ = π/2) in our section 3. Their numerical results are in complete

agreement with ours, but as discussed above (3.18), their definition of the screening length

differs from ours for velocities v < 0.447. We should also note two additional developments

that took place after the first version of this paper had appeared: first, the addition of a plot

to [33] (figure 16), showing a meson size that scales with velocity in a manner compatible

with the results for the screening length obtained in [34] and the present paper; second, the

appearance of the work [42], which generalizes the screening length calculation to a large

class of backgrounds, arriving at an analytic determination of the velocity-dependence in

the ultra-relativistic regime.

2. Nambu-Goto string in AdS-Schwarzschild

As mentioned in the Introduction, the computation in [6, 7] of the drag force felt by an

external quark moving through N = 4 SYM plasma focuses on a string that extends all

the way from the boundary to the horizon of an AdS-Schwarzschild geometry, i.e., from

r →∞ to r = rH , with r an appropriate radial coordinate that we will henceforth also use

as spatial worldsheet coordinate. We will in addition employ the boundary time t = x0 as

worldsheet time, so altogether we work in the static gauge

σ = r, τ = t . (2.1)

– 3 –
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The dynamics of the string are described by the Nambu-Goto action

S = − 1

2πα′

∫
dτdσ

√
−det gαβ ≡

1

2πα′

∫
dτdσ L , (2.2)

where Gµν is the the spacetime metric and gαβ ≡ Gµν∂αX
µ∂βX

ν the induced worldsheet

metric. The force that a given segment of the string exerts along spatial direction i on the

neighboring segment was expressed in [7] as

Fi =
1

2πα′
√−gP ri , (2.3)

with

Pαµ = −gαβ∂βXµ (2.4)

the worldsheet current associated with spacetime momentum, whereas in [6] it was formu-

lated as

Fi =
1

2πα′
Πr
i , (2.5)

with

Πα
µ =

∂L
∂(∂αXµ)

(2.6)

the canonical momentum densities conjugate to Xµ. By explicitly inverting the 2×2 matrix

gαβ , one can easily verify that √−gPαµ = Πα
µ , (2.7)

and so the expressions (2.3) and (2.5) coincide. Clearly the latter is simpler to use in

explicit computations.

The crucial point in the calculation of [6, 7] is the observation that, if this string is

assumed to travel at constant velocity v 6= 0 along a direction x = x1 parallel to the

boundary, then there is a certain velocity-dependent value of the radial coordinate,

rv =
rH

(1− v2)1/4
, (2.8)

below which the embedding function

X(r, t) = vt+ ξ(r) (2.9)

for the string would become imaginary. The only way to avoid this is to let the string trail

behind its boundary endpoint following a specific profile ξ(r) 6=constant, which translates

into a specific value for the drag force Fx exerted on the endpoint. In short, the non-zero

value of the drag force is set uniquely by the condition that the string crosses the critical

radius rv.

In this section we are interested in exploring how these considerations generalize to a

moving string that has both of its endpoints on the boundary, and is therefore dual not to

a single quark but to a quark-antiquark pair in the gauge theory.

Since the string now extends first away from and then back to the boundary, the

static gauge choice σ = r leads of course to a double-valued parametrization, but this
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poses no problem other than the need to check by hand that the two halves of the string

join together smoothly (which ensures that the action is extremized not just piecewise,

but over the entire worldsheet). To describe a moving quark-antiquark pair, both of the

string endpoints are taken to travel with the same velocity v in the x direction, and to be

separated by a constant distance L along a certain boundary direction y = x2. In other

words, with a convenient choice of origin, the embedding functions (2.9) and

Y (r, t) = Y (r) (2.10)

satisfy the boundary conditions

X(∞, t) = vt, Y (∞) = ∓L
2
, (2.11)

where the upper (lower) signs refer to the left (right) half of the string. For concreteness,

we specialize immediately to the case where y is perpendicular to the direction of motion x,

which among other reasons is of particular interest in view of the connection with [21]. The

string starts at r → ∞ and extends down to a minimal radius rmin, which by symmetry

is such that Y (rmin) = 0 and Y ′(rmin) = ∞ (which is of course the condition that the

projections of the two halves of the string onto the r − y plane can be glued together

smoothly).

The main question is whether such a string also trails behind its endpoints and exerts

a drag force on them, as would seem compulsory if the string crosses rv, and might appear

natural more generally on physical grounds. The shape of the string would then be similar

to that shown in figure 1a. It is easy to see, however, that this cannot happen. The

reason is that, on the one hand, the force along the direction of motion must vanish at the

midpoint (r = rmin), because by symmetry the string at that point must be perpendicular

to the x-axis, and on the other hand, the force must be constant along the string, because

each of its segments moves at constant velocity. We conclude then that Fx = 0 everywhere,

which implies that the string remains upright, as in figure 1b.

Since we initially envisioned the string as being pulled along from its endpoints, it might

seem somewhat counterintuitive that it does not lean backward. To clarify this point, it

is worth noting that the r-independence of Fx ∝ Πr
x is a consequence of the equation of

motion for X (or, equivalently, the covariant conservation law for the momentum current

Pαx ),

∂t(Π
t
x) + ∂r(Π

r
x) = 0 , (2.12)

where the first term vanishes due to the trivial time-dependence of the embedding func-

tions (2.9) and (2.10) (while the right-hand side vanishes because L is independent of X).

From this it becomes clear that the conclusion of the previous paragraph can be avoided,

and the string can lean backward, if and only if it displays a more complicated time de-

pendence (e.g., some type of oscillatory behavior).

The basic issue here is a familiar one: specifying boundary conditions for the string does

not select a unique solution to the corresponding equation of motion; one must additionally

specify initial conditions. If the string is initially upright and moving as a whole at velocity
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(a)

rmin

y

x

r

rv

rH

L

−→v

(b)

y

x

r

rmin

L

−→v

∞

Figure 1: Sketch of the string dual to a moving quark-antiquark pair. The radial coordinate runs

downward, so the horizon at r = rH is shown at the top and the boundary at r →∞ is represented

by the plane at the bottom. The dash-dot line at r = rv marks a velocity-dependent radius beyond

which the string cannot penetrate. As the string moves to the right, its endpoints (dual to the

external quark and antiquark) trace out the dotted trajectories. Its shape codifies information

on the configuration of the SYM color fields. (a) One might expect the string to lean backward

as a result of the motion. This turns out to be possible only if the string has a nontrivial time-

dependence. (b) The lowest-energy configuration for the moving string is in fact upright, similar to

the one obtained in the static case. See text for further discussion.

v, then as we have seen it will continue to do so, and its endpoints will trace the required

paths without requiring an external agent that pulls on them in the direction of motion.

On the other hand, if the string is initially static and then we start pulling its endpoints

with whatever force is necessary for them to move at constant velocity v, the string will of

course lean backward, as in figure 1a. What we have learned above, however, is that such

a string will continue to oscillate and will never (classically) stabilize to a configuration of

the type (2.9). The solution in question is therefore clearly not the one with the lowest

energy for the given boundary conditions. Nevertheless, as we will see in the next section,

there are circumstances under which this type of solution might conceivably play a role in

the computation of the energy for the quark-antiquark system of interest to us.

We should similarly keep in mind that it is possible to satisfy the boundary condi-

tions (2.11) with two separate strings that reach all the way down from the boundary to

the horizon at fixed Y = ∓L/2, trailing behind their endpoints as described in [6, 7]. Such

configuration would clearly describe an unbound quark and antiquark, and it will also be

of relevance below.

Let us now proceed towards the determination of the shape of the moving string in
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the AdS-Schwarzschild background. Using the explicit form of the metric2

ds2 =
1√
H

(
−hdt2 + d~x2

)
+

√
H

h
dr2 , (2.13)

H =
R4

r4
, h = 1− r4

H

r4
,

together with the embedding functions (2.9) and (2.10), the Lagrangian density (2.2) sim-

plifies to

L = −√−g = −
√

1 +
h

H
(X ′2 + Y ′2)− v2

H
Y ′2 − v2

h
. (2.14)

The associated non-vanishing canonical momentum densities are

Πt
t =

−1√−g

[
1 +

h

H

(
X
′2 + Y

′2
)]

,

Πt
x =

v√−g

[
1

h
+

1

H
Y
′2
]
,

Πr
t =

v√−g

[
h

H
X
′
]
, (2.15)

Πr
x =

−1√−g

[
h

H
X
′
]
,

Πr
y =

−1√−g

[
h− v2

H
Y
′
]
.

As already noted above, given that the string moves at constant velocity and L is

independent of X, the corresponding equation of motion (2.12) is just the statement that

the conjugate momentum density Πr
x is a (real) constant, which we will denote Πx in

what follows. The same is of course true for Πy ≡ Πr
y. According to (2.5), these constants

determine the forces−Fx and−Fy that an external agent must exert on the string endpoints

to satisfy the given Dirichlet boundary conditions (2.11). This agent supplies energy to

the string at a rate dE/dt = Πr
t /2πα

′, which as expected is seen from (2.15) to equal the

work −vFx.

Inverting the relations (2.15) to express X ′ and Y ′ in terms of the constants Πx and

Πy, we obtain

X ′ = −Πx
(h− v2)

h

√
H

(h− v2)( hH −Π2
x)− hΠ2

y

, (2.16)

Y ′ = −Πy

√
H

(h− v2)( hH −Π2
x)− hΠ2

y

, (2.17)

where we notice the appearance of the same factor h − v2 whose vanishing defined the

critical radius (2.8) that as explained above played a crucial role in fixing the value

Πx = − v√
1− v2

(rH
R

)2
(2.18)

2The relevant background is as usual (AdS-Schwarzschild)5×S5, but we display only the metric for the

first factor because the string is taken to lie at a fixed position on the S5.
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for the string dual to a moving quark [6, 7].

There are two immediate things we can learn from the above equations. First, we see

from (2.17) that Y ′ diverges at the point where the denominator vanishes; according to the

characterization following (2.10) this defines the turnaround point rmin:

[
(h− v2)

(
1

H
− Π2

x

h

)]

r=rmin

= Π2
y . (2.19)

It is easy to show from this expression that rmin ≥ rv, where equality holds only if Πy = 0

(which would imply L = 0). So, as expected, we find that the string dual to the moving

quark-antiquark pair cannot penetrate beyond the critical radius rv.

Second, in order for the projections of the two halves of the string onto the y−x plane to

join smoothly, we must require that ∂Y/∂X = Y ′/X ′ =∞ at rmin, but taking the quotient

of (2.17) and (2.16) we see that this is not possible unless Πx = 0, and therefore X ′ = 0.

So, as we had already anticipated, we learn that the string can only move at constant speed

if it is upright. This same conclusion has been reached independently in [33].

Specializing (2.17), (2.19), (2.14) and (2.15) to the case X ′ = 0 (⇒ ξ(r) = 0), we

can now derive the equations that will be of interest to us in the remainder of this paper.

The profile of the upright ∩-shaped string that moves with velocity v and has endpoint

separation L is determined by

Y ′ = −Πy
R4

√
(r4 − r4

H)(r4(1− v2)− r4
H −R4Π2

y)
, (2.20)

where the value of Πy must be chosen in such a way that

L = 2

∫ ∞

rmin

dr Y ′ = 2ΠyR
4

∫ ∞

rmin

dr√
(r4 − r4

H)(r4(1− v2)− r4
H −R4Π2

y)
, (2.21)

with

rmin =

(
r4
H +R4Π2

y

1− v2

)1/4

. (2.22)

Using (2.20), the Lagrangian density (2.14) reduces to

Lbound = − r4(1− v2)− r4
H√

(r4 − r4
H)(r4(1− v2)− r4

H −R4Π2
y)
. (2.23)

Close to the boundary we find Lbound → −
√

1− v2, which upon integration implies that the

total worldsheet area per unit boundary time is linearly divergent— an obvious consequence

of the fact that the string extends all the way to spatial infinity. The same divergence is

found in the area of the two disconnected worldsheets dual to the unbound quark and

antiquark, described by (2.14)–(2.17) with Πy = 0 and Πx as in (2.18), which result in

– 8 –
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Lunbound = −
√

1− v2. Subtracting the two areas we find the finite expression3

A = − 2

2πα′

∫ +T /2

−T /2
dt

(∫ ∞

rmin

drLbound −
∫ ∞

rH

drLunbound

)
. (2.24)

According to the standard recipe [23], in the dual finite-temperature gauge theory, the

relative area (2.24) determines the expectation value (in a stationary phase approximation)

of the Wilson loop traced by the moving quark-antiquark pair.

We are also interested in computing the total energy of the ∩-shaped string, which

translates into the energy of the quark-antiquark pair. Starting from (2.15), the Hamilto-

nian density H ≡ −Πt
t works out to

Hbound =
r4 − r4

H√
r4(1− v2)− r4

H −R4Π2
y

. (2.25)

As expected, the behavior of this expression near the boundary gives rise to a linear di-

vergence in the total energy of the string, which could again be cancelled by subtracting

the energy of the disconnected strings dual to the unbound quark and antiquark, obtained

from integrating

Hunbound =
r4 − r4

H(1− v2)

(r4 − r4
H)
√

1− v2
. (2.26)

This subtraction, however, would introduce a new infinity, because (2.26) implies that the

energy of each of the moving unbound strings is logarithmically divergent at the r = rH
endpoint of the integration [6]. The physical origin of this divergence is the infinite amount

of energy that has been provided to the system by the external agent that has pulled the

boundary endpoint of the string along the x direction for an infinite period of time. From

the perspective of a boundary observer, over the course of time this energy has flowed along

the string and accumulated in the vicinity of the horizon.

As explained in [6], a simple estimate of the work done on the trailing string by the

external agent is obtained by assuming that it has exerted precisely the force needed to

overcome the constant drag force (2.18) over exactly the (infinite) distance that separates

the front (boundary) and back (horizon) endpoints of the string. A short calculation shows

that this amounts to identifying

Hinput
unbound =

r4
Hv

2

(r4 − r4
H)
√

1− v2
(2.27)

as the energy density provided by the external agent. Subtracting this from (2.26), we

obtain an estimate of the energy density ‘intrinsic’ to the moving string,

Hintrinsic
unbound ≡ Hunbound −Hinput

unbound =
1√

1− v2
, (2.28)

3In more accurate language, one should as usual introduce a regulating surface at a large radius r = rΛ

to make both integrals finite, subtract, and in the end take rΛ → ∞. In the dual gauge theory, this is

equivalent to introducing a UV cutoff Λ ' rΛ/R
2.
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which, as expected, no longer includes the logarithmically-divergent portion. The prescrip-

tion for eliminating this divergence is of course highly non-unique: one may add to (2.27)

any function U(r, v) such that U(v) ≡
∫∞
rH
U(r, v) <∞ (in order for U to represent a finite

renormalization of the string energy) and U(r, 0) = 0 (to continue to match the known

energy of the static string).

For use below, it is convenient to note here that a completely analogous story applies to

the linear momentum P ≡ Πt
x of the unbound strings [6]: upon integration, the momentum

density Punbound = v/(h
√

1− v2) which follows from (2.15) leads to both a linear divergence

at r →∞ and a log divergence at r = rH ; the latter is a reflection of the infinite amount

of momentum provided by the external agent, which can be estimated to be P input
unbound =

Hinput
unbound/v; the remaining P intrinsic

unbound = v/
√

1− v2 is then an estimate of the momentum

density intrinsic to the moving string.

The preceding discussion points towards

E ≡ 2

2πα′

(∫ ∞

rmin

drHbound −
∫ ∞

rH

drHintrinsic
unbound + U(v)

)
(2.29)

as a simple and finite expression that codifies the energy of the moving ∩-shaped string

relative to that of the two moving disconnected strings, or, in dual language, the energy

of the quark-antiquark pair relative to that of the unbound quark and antiquark. This

definition captures, for any given v, the correct L-dependence of the energy of the bound

system. The arbitrariness involved in the choice of the function U(v) leads, however, to

two important drawbacks: it denies meaning to a direct comparison of values of the energy

computed at different velocities, and makes it impossible to deduce from the value of

E(L, v) alone whether, for a given L and v, the energetics favor the bound or the unbound

configuration. The resolution of these problems will require establishing an unequivocal

operational definition of the intrinsic energy of the moving unbound strings (a natural

suggestion was made in [6]).

As we have seen, the source of the ambiguity in the definition of E(L, v) is the infinite

amount of energy supplied to the unbound strings by the agent that drags them, so a

natural way to sidestep this difficulty is to compute the energy in the string rest frame,

where the external agent does no work. The requisite coordinate transformation is of course

t̄ = γ(t− vx) ,

x̄ = γ(x− vt) , (2.30)

ȳ = y ,

r̄ = r ,

(with γ ≡ 1/
√

1− v2) and amounts, from the gauge theory point of view, to a Lorentz

boost that takes us from the rest frame of the plasma, where we had worked up to now,

to the rest frame of the quark and antiquark. The canonical momentum densities (2.15)

transform according to

Π̄τ̄
µ̄ =

∂Xν

∂X̄ µ̄

(
∂σ

∂σ̄
Πτ
ν −

∂τ

∂σ̄
Πσ
ν

)
, (2.31)
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Π̄σ̄
µ̄ =

∂Xν

∂X̄ µ̄

(
∂τ

∂τ̄
Πσ
ν −

∂σ

∂τ̄
Πτ
ν

)
,

where we have taken into account the effect of the change from the static gauge in the

plasma rest frame (τ = X0, σ = R) to the static gauge in the quark rest frame (τ̄ =

X̄0, σ̄ = R̄).

It is easy to check that Π̄r̄
t̄ = 0, which shows that, as expected, in this frame no energy

is being supplied to the string. The total energy of the unbound strings will consequently

have no logarithmic divergence, and its linear divergence will serve to cancel that of the

∩-shaped string in the usual straightforward way. Because the string is static, we find

H̄ = −Π̄t̄
t̄ = −L̄, and from the fact that the Lagrangian transforms as a scalar density it

follows that L̄ = γL, so the energy of the bound system relative to that of the unbound

system,

Ē ≡ − 2

2πα′

(∫ ∞

rmin

dr L̄bound −
∫ ∞

rH

dr L̄unbound

)
, (2.32)

is related to the area (2.24) through Ē = γA/T = A/T̄ , just like it should. We stress that in

this frame we have been able to cleanly subtract the energy of the unbound strings without

introducing any ambiguities, so both the L- and v-dependence of (2.32) are physically

meaningful, and the bound configuration is known to be energetically preferred whenever

Ē(L, v) < 0.

It is interesting to note that, in contrast with the energy, even in the rest frame

the linear momentum of the string cannot be defined unequivocally without additional

physical input. Even though the external agent does no work on either the bound or

unbound strings, in the latter case it does supply momentum to the static string: in gauge

theory language, a force must be exerted to hold the isolated quark in place as the plasma

flows by at speed v. As a result, the momentum density P̄unbound = vγ2(1 − h)/h for the

disconnected strings gives rise to a logarithmic divergence at the r = rH endpoint of the

integration. This may be eliminated by subtracting the estimate

P̄ input
unbound = vγ2

(
1− h
h

)
(2.33)

for the momentum supplied by the external agent, which can be obtained either by Lorentz-

transforming (Πα
µ)input

unbound to the barred frame, or by recomputing directly in the barred

frame under assumptions parallel to those that led to (2.27). After this subtraction, one

would be left with P̄ intrinsic
unbound = 0 as an estimate of the momentum intrinsically associated

with the string. This vanishing result might at first sight appear natural and unambiguous,

since the string is, after all, at rest. That the issue is not this simple becomes clear upon

observing that the momentum density for the ∩-shaped string,

P̄bound = vγ(1− h)H, (2.34)

is non-vanishing, despite the fact that this string is also at rest, and no external momentum

has been supplied to it. This is only possible because in the barred frame ḡ t̄x̄ 6= 0, so the

metric is not static. We will come back to this discussion in the next section.
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3. Energy of moving quark-antiquark system

In this section we will use the above results for the moving string to make various inferences

about the dual system: an external quark-antiquark pair in SU(N) N = 4 SYM with

‘t Hooft coupling g2
YMN and temperature T determined by the AdS radius R, horizon

radius rH and string length
√
α′ through [3]

g2
YMN =

R4

α′2
, T =

rH
πR2

. (3.1)

According to (2.5), the fact that Πx = 0 translates into the statement that, in stark

contrast with the solitary quark considered in [6, 7], an external quark-antiquark pair

feels no drag force as it ploughs through the plasma, a curious result that was obtained

independently in the recent paper [33].

As explained in [6, 7] and analyzed more closely in [14 – 16], a moving quark produces

an extended wake in the color fields, which may be regarded as a coherent spray of gluons

radiated away from the quark, and is the CFT dual of the trailing string that extends all

the way down to the horizon. It is this wake that transports energy and momentum away

from the quark and into the surrounding medium. It is worth noting that this mechanism

can operate even at zero temperature, where there is no plasma: given appropriate initial

conditions for the gluonic fields, a quark moving at constant speed can lose energy to

the wake it imprints on these fields. The dual statement is that a string on pure AdS

that displays a non-trivial time-dependence can trail behind its boundary endpoint even

if the latter moves at constant velocity.4 This, of course, should not come as a surprise,

because the SYM vacuum constitutes, after all, a highly nonlinear polarizable medium.

Needless to say, the lowest-energy configuration for the gluonic field profile surrounding the

moving quark at zero temperature is the one obtained by boosting the static profile; this

configuration is dual to an upright string, which feels no drag force. The string considered

in [6, 7] correctly reduces to this case when T → 0, which ensures that the energy loss

process studied there is intrinsically associated with the presence of the plasma.

Unlike the single quark, which carries a net color charge, the quark-antiquark pair

is a dipole, and consequently sets up a shorter-ranged profile in the gluonic fields. At

zero-temperature, the dipolar TrF 2 falloff is proportional to L3/r7 [18, 35], compared

to the Coulomb-like 1/r4 of the monopole [17]. At finite temperature, we have learned

here that the profile generated by the moving pair is not able to transport energy away

from it, a property that could plausibly be verified using the methods of [14 – 16]. In the

N À 1, g2
YMN À 1 regime of the gauge theory that is captured by classical string theory on

weakly-curved AdS-Schwarzschild, no other mechanism of energy loss is at work, and so the

quark-antiquark pair moves through the plasma unimpeded. This result should generalize

to any color-neutral probe of the plasma, including the baryon, whose static AdS dual

was constructed in [36 – 38] and whose zero-temperature TrF 2 falloff is also ∝ r−7 [18].

4The assertion for the string may be deduced from an argument similar to the discussion following (2.12);

its SYM dual could be verified through calculations similar to those performed in [18].
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The remarks we made above for the solitary quark at T = 0 apply as well to these color-

neutral systems at T > 0: with a different set of initial conditions for the gluonic fields,

the quark-antiquark pair and the baryon can experience a drag force.

Let us now proceed to determine the energies Ē and E of the quark-antiquark pair

for a given velocity v and separation L. For this we first need to carry out the inte-

grals (2.21), (2.32) and (2.29) to find L(Πy, v), Ē(Πy, v) and E(Πy, v), and then eliminate

Πy to obtain Ē(L, v) and E(L, v). As indicated in (2.3) and explained in the discussion

below (2.15), Πy is a measure of the force Fy that an external agent must exert in order to

keep the qq̄ pair at the desired separation.

Unfortunately, the integrals cannot be performed analytically, so we must solve the

problem numerically. For this purpose, it is convenient to use h = 1− r4
H/r

4 in place of r

as the integration variable. The range of integration should then be taken from

hmin ≡ h(rmin) =
v2 + f2

y

1 + f2
y

(3.2)

to 1, where we have defined the rescaled force

fy ≡
R2

r2
H

Πy =
2

π
√
g2

YMNT
2
Fy .

The result rmin > rv of the previous section translates into hmin > v2, which can also

be easily deduced from (3.2). After changing variables in this manner and using the

dictionary (3.1), the expression for the quark-antiquark separation (2.21) turns into

L(fy, v) =
fy

2πT

∫ 1

hmin

dh

(1− h)
1
4

√
(h− v2)h− (1− h)hf 2

y

, (3.3)

and the energy of the qq̄ pair in its rest frame (2.32) becomes5

Ē(fy, v) =
T
√
g2

YMN

4



∫ 1

hmin

dh(h − v2)γ

(1− h)
5
4

√
(h− v2)h− (1− h)hf 2

y

−
∫ 1

0

dh

(1− h)
5
4


 . (3.4)

As noted at the end of the previous section, the subtraction implemented by the second

term in equation (3.4) ensures a finite result and corresponds to removing the self-energies

of the quark and antiquark separately held in place as the plasma flows by with velocity v

in the −x direction. The energy of the system in the frame where the plasma is static and

the pair moves is given instead by (2.29), which translates into

E(fy, v) −U(v) =
T
√
g2

YMN

4



∫ 1

hmin

dh
√
h

(1− h)
5
4

√
(h− v2)− (1− h)f 2

y

−
∫ 1

0

dhγ

(1− h)
5
4


 .

(3.5)

5An overall factor of γ was missing from the energies computed in the first version of this paper that

was posted on the arXiv. We thank Hong Liu for bringing this to our attention.
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As explained below (2.28), the function U(v) reflects an ambiguity in separating the energy

intrinsically associated with the moving quark from the energy supplied by the agent that

pulls the quark and lost to the plasma.

Notice that while the second terms in the plasma frame energy (3.5) and the qq̄ frame

energy (3.4) are proportional to one another, the first terms are not. The reason is that

the boost that takes us back from the qq̄ frame to the plasma frame mixes the energy∫ 1
hmin

dh H̄bound of the pair with its momentum
∫ 1
hmin

dh P̄bound, which as seen in (2.34) is

non-vanishing. Since by definition the quark and antiquark are at rest in this frame, it is

clear that the momentum in question is carried not directly by them, but by the gluonic field

configuration produced by their interaction with the flowing plasma, i.e., the momentum

density P̄(r) encodes the chromodynamic analog of the electromagnetic Poynting vector,

at the energy scale ∼ r/R2.6 It would be interesting to explore this relation in more detail

using the methods of [16].

Even though (3.4) and (3.5) are not proportional to one another, they turn out to be

related through the relatively simple expression

E(L, v) − U(v) = γĒ(L, v) +
π

2

√
g2

YMNT
2 v

2γ2L

fy
. (3.6)

This enables one to determine E(L, v) once Ē(L, v) is known, without having to carry out

any additional numerical integration, so in the remainder of this paper we will concentrate

on computing the latter.

The results of the numerical integration of (3.3) are shown in figure 2, which displays

l ≡ 2πTL

as a function of the applied external force fy for a few different values of v. The behavior

is in all cases qualitatively the same as was found in [31, 32] for the static case: at any

given v, it is only possible to attain separations in a finite range 0 ≤ L ≤ Lmax(v), and

each separation in this range can be achieved with two different values of the force Fy. The

exception is of course the maximum Lmax(v), whose physical meaning will become clear

below, and which we find empirically to be located at a value of the external force that can

be well-approximated with a quadratic function of the velocity,

fymax(v) ' 0.949 + 0.247v + 0.223v2 . (3.7)

Combining these results with the numerical integration of (3.4), we can find the quark-

antiquark energy Ē(L, v) for any velocity 0 ≤ v ≤ 1 and separation 0 ≤ L ≤ Lmax(v). The

results are plotted in figures 3 and 4, which display

ē ≡ 4√
g2

YMNT
Ē

6This also leads one to expect the momentum intrinsic to the isolated quark held fixed in the flowing

plasma to be non-vanishing, unlike what the naive estimate (2.33) (which corresponds to U(v) = 0) would

have indicated.
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Figure 2: Quark-antiquark separation (in units of 1/2πT ) as a function of the applied external

force (in units of π
√
g2

YMNT
2/2), for velocities v = 0, 0.45, 0.7, 0.95. Lower curves correspond to

larger velocities.
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ē

Figure 3: Quark-antiquark energy (in units of T
√
g2

YMN/4) as a function of separation (in units

of 1/2πT ), for (a) v = 0 (b) v = 0.45. The solid (dashed) portion of each curve corresponds to

stable (metastable) configurations.

as a function of l, for a few representative values of v. In each case the curve is divided

into two parts: a dashed portion obtained from the smaller value of the applied force

consistent with the given separation L (i.e., fy < fymax), and a solid portion obtained from

the larger value (fy ≥ fymax). As we can see in the figures, it is this latter case that gives

the lower value for the quark-antiquark energy, and consequently the solid curve describes

the stable configurations that are of most interest to us. The dashed curve is associated

instead with configurations that are physical and can be selected through a proper choice

of initial conditions for the gluonic fields in SYM (or, in dual language, for the string in

AdS-Schwarzschild), but are only metastable (i.e., they are stable under small, but not

arbitrary, fluctuations).

In figure 3a we verify that for the static configuration v = 0 we correctly reproduce the

q-q̄ potential computed in [31, 32], which, as explained there, encodes all of the expected

physics. At small separations (large energies) the quark-antiquark pair becomes insensitive

to the plasma and as a result the potential approaches the 1/L behavior obtained at

T = 0 in [23]. As the separation grows, however, the effects of the plasma progressively

screen the quark and antiquark from one another, and as a consequence raise the system’s

energy above the Coulombic behavior. The screening becomes complete at the distance

L∗ ≈ 1.51/2πT < Lmax(0) where the energy matches that of the unbound system. For
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Figure 4: Quark-antiquark energy (in units of T
√
g2

YMN/4) as a function of separation (in units

of 1/2πT ), for (a) v = 0.7, (b) v = 0.95. The solid (dashed) portion of each curve corresponds to

stable (metastable) configurations.
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lmax
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l∗ = lmax

Figure 5: Maximum quark-antiquark distance Lmax and screening length L∗ as functions of the

velocity. Both lengths are given in units of 1/2πT .

separations larger than this screening length, the quark and antiquark are free and the qq̄

potential vanishes, as indicated by the horizontal solid line. The configurations described

by (3.3) and (3.4) in the range L∗ < L ≤ Lmax are only metastable, which is why the

corresponding portion of the curve is also dashed.

As seen in figures 3 and 4, the results for v > 0 have many similarities with the static

case. The main overall effect of increasing the velocity is to move the Ē(L) curve to the

left and down. The dependence of Lmax on the velocity is given by the solid line in figure 5.

We find it to be quite close to

Lmax(v) ' 1.73

2πT
(1− v2)1/3 , (3.8)

shown as the long-dash line in the figure. We will comment on the precise v → 1 behavior

below.

The energy at this maximum separation, Ēmax(v) ≡ Ē(Lmax, v) is shown as a function

of velocity in figure 6. For increasing v this energy decreases, passing through zero at a

velocity ∼ 0.447, and then approaching −∞ as v → 1. We find that over most of the

0 ≤ v ≤ 1 range the graph is practically indistinguishable from that of the function

Ēmax(v) '
0.368T

√
g2

YMN

4
(1− 5v2)(1− v2)−5/12 . (3.9)
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Figure 6: Maximum energy as a function of v, in units of T
√
g2

YMN/4.

The precise behavior in the v → 1 limit will be determined below.

For any velocity, we expect the presence of the plasma to become irrelevant at short

distances, so at small L our results should approach the corresponding zero-temperature

curves. The latter can be determined analytically. By taking the T → 0 limit in (3.3), (3.4)

and (2.22) we obtain

L = 2R4Πy

∫ ∞

rmin

dr

r2
√

(1− v2)r4 −R4Π2
y

(3.10)

and

Ē =
1

πα′



∫ ∞

rmin

r2
√

1− v2dr√
(1− v2)r4 −R4Π2

y

−
∫ ∞

0
dr


 , (3.11)

with rmin = R
√

Πy/(1 − v2)1/4. Changing to the dimensionless integration variable ρ ≡
(1− v2)1/4r/R

√
Πy, it is possible to find an explicit relation between Ē and L,

Ē(L, v) = −
4π2
√
g2

YMN

Γ(1
4 )

4
L

, (3.12)

which agrees for any v with the static result obtained some years ago in [23]. We have

checked that our results for Ē(L, v) at finite temperature correctly approach (3.12) at small

separation. The reason for this agreement is evident from the string theory side: the limit

L → 0 implies that rmin → ∞, so for small separations the string does not penetrate far

into the AdS-Schwarzschild geometry, and it is difficult for it to sense the difference with

pure AdS. Notice also that, in this limit, the second term in both the left- and right-hand

side of (3.6) becomes irrelevant (the former, because the ambiguity that led to U(v) was

associated with the presence of the horizon; the latter, because it scales like L3 in this

limit), so the plasma frame energy reduces unequivocally to

E(L, v) = γĒ(L, v) = −
4π2
√
g2

YMN

Γ(1
4)

4√
1− v2L

, (3.13)
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as dictated by the restored Lorentz invariance.7

The behavior of the full Ē(L, v) graph for small velocities is essentially the same as

in the static case. As the velocity increases, the screening length L∗(v) (which we always

define as the separation beyond which the quark and antiquark become unbound8 is found

to increase slowly, as shown by the short-dash line in figure 5. The dependence is nearly

quadratic,

L∗(v) ' 1.51

2πT

(
1 +

1

3
v2

)
for v < 0.447. (3.14)

As seen in the same figure, Lmax(v) is monotonically decreasing, so there is a velocity

vgap ∼ 0.447 at which both lengths coincide; this is precisely the zero in figure 6, and

explains the bound on the region of validity of (3.14).

For v > vgap, both types of bound solutions (stable and metastable) have negative

energy, so a gap begins to develop between the bound and unbound configurations, whose

width evolves as indicated in the negative portion of the graph in figure 6. Since the width

increases without bound as v → 1, it is natural to wonder whether at v > vgap there

could be additional bound qq̄ configurations which cover a range of separations L > Lmax,

and consequently narrow or perhaps even eliminate the gap. As discussed earlier in this

section, there certainly exist configurations in which the quark and antiquark move at

constant velocity but the color fields display a more complicated time dependence. Their

AdS description was discussed in the paragraphs that follow (2.12); it involves a string

that leans back as in figure 1a and has time dependence beyond the overall motion at

velocity v. These configurations exist both for L ≤ Lmax and L > Lmax, but in the former

case they are clearly metastable and therefore not of interest for the present discussion.

What is not at all obvious to us is whether at least one of the configurations for L > Lmax

manages to have negative energy. This is a complicated question that would appear to

require numerical exploration of the space of solutions to the corresponding coupled partial

differential equations.

In the remainder of this paper we assume that for all values of L and v, the lowest

energy configurations are always the ones with the simplest time dependence: for L < Lmax,

the bound qq̄ system dual to the upright string in figure 1b; for L > Lmax, the unbound

quark and antiquark dual to two separate copies of the string analyzed in [6, 7]. The graphs

in figures 3, 4 can then be taken at face value, and imply in particular that for v > vgap the

screening length should be identified with the location of the discontinuity in Ē(L), i.e.,

L∗(v) = Lmax(v) for v > 0.447. (3.15)

7This dependence was also noted recently in [13], which includes some comments on the finite-

temperature behavior of E(L, v) in the ladder approximation of the gauge theory.
8Given the shape of the energy graphs, the fact that Ē(L∗(v), v) = 0 implies that for separations L > L∗

the decay from the bound to the unbound configurations is allowed from the point of view of energy

conservation. Since, as we have seen above, the momenta of the configurations is in general non-vanishing

(despite the fact that we are in their rest frame), strictly speaking one would also need to check that the

decay is allowed from the point of view of momentum conservation. This, however, would require precise

knowledge of the momentum intrinsic to the isolated quark, which is at present lacking. Such knowledge

would also enable one to determine the screening length directly from the plasma frame energy E(L, v).
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The AdS/CFT prediction for the velocity-dependence of the screening length (for an

arbitrary angle θ between the direction of motion and the q-q̄ separation L) was the main

subject of [34],9 which appeared while the first version of this paper was in preparation.

The authors of that work did not compute Ē(L, v), and chose to define the screening length

not as L∗ but as the maximum allowed separation Lmax, throughout the entire range of

velocities. Their equations and numerical results (for θ = π/2) are in complete agreement

with ours. As noted in (3.8), we have found that, over the entire range 0 ≤ v ≤ 1, the

Lmax(v) curve is best described as being proportional to (1 − v2)1/3. The authors of [34],

on the other hand, have found analytically that the behavior of Lmax(v) in the ultra-

relativistic limit 10 is precisely proportional to (1 − v2)1/4. This result can be confirmed

directly from (3.3), which in the v → 1 limit reduces to

L(fy, v) =
1

2πT

4
√

2π3/2

Γ(1/4)2

fy

(1 + f2
y )3/4

(1− v2)1/4 . (3.16)

In agreement with (3.7), this expression has a maximum at fymax =
√

2, which leads to

Lmax(v) =
1

2πT

3−3/48π3/2

Γ(1/4)2
(1− v2)1/4 ≈ 1.49

2πT
(1− v2)1/4 for v ∼ 1. (3.17)

Combining this with (3.14) and (3.15), we obtain the relatively simple expression

L∗(v) ' 1.51

2πT

(
1 +

7

12
v2 − 7

12
v4

)
(1− v2)1/4 for 0 ≤ v ≤ 1 , (3.18)

which captures the correct analytic behavior at v → 0 and v → 1, and gives good numerical

agreement over the entire range of velocities.

As seen in these last two equations, for large velocities the screening length L∗(v)

decreases monotonically to zero, implying that Ē(L, v) = 0 everywhere except in the rapidly

shrinking range 0 < L < L∗(v), where Ē(L, v) may be obtained from (3.16) and the v → 1

limit of (3.4),

Ē(fy, v) = −
T
√
g2

YMN

4

4
√

2π3/2

Γ(1/4)2

2 + f2
y

(1 + f2
y )3/4

(1− v2)−1/4 . (3.19)

It is interesting to note that even though L is small and the condition rmin > rv = rH(1−
v2)−1/4 forces the string to stay close to the boundary, the L-dependence of the energy

remains more complicated than in the T = 0 case, and is qualitatively similar to the graphs

shown in figure 4: there is a metastable region at fy <
√

2, and a stable region at fy >
√

2,

such that for fy À 1 one recovers the Coulombic behavior (3.12). By evaluating (4) at

fymax =
√

2 we find

Ēmax(v) = −
T
√
g2

YMN

4

29/23−3/4π3/2

Γ(1/4)2
(1− v2)−1/4 for v ∼ 1. (3.20)

9This work also emphasized the importance of this calculation for advancing towards a quantitative

understanding of the J/ψ suppression observed in the quark-gluon plasma produced at RHIC.
10We thank Hong Liu for clarifying this point to us after the first version of this paper was posted on the

arXiv.
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Note again the difference in the exponents found here and in (3.9), which was meant as a

fit of Ēmax(v) throughout the entire interval 0 ≤ v < 1.

In the v → 1 limit the Wilson loop traced by our moving quark-antiquark pair ap-

proaches the lightlike loop used in [21] to propose a non-perturbative definition of the

jet-quenching parameter q̂.11 We would have therefore expected our results to make con-

tact with those of [21] in this limit, and were surprised to find that this is not the case. The

difference is drastic: whereas the string of [21] extends all the way from the boundary to the

horizon and back, in the v → 1 limit the string that we use to describe bound configurations

explores only an ever-shrinking region of the geometry close to the boundary.12

The main obstruction to a continuous interpolation between our results and those

of [21] is the fact that for any value of v we have found and employed string worldsheets

whose area is real, whereas the authors of [21] work with a worldsheet whose area is

imaginary. The difference does not appear to be attributable to the fact that their Wilson

loop is strictly lightlike, while ours is (in general) only approximately so, because the gauge

theory calculations which motivate the connection to the jet-quenching parameter build

upon an eikonal approximation justified in terms of a high energy limit which manifestly

takes v → 1 from below [20, 40]. Moreover, an argument has recently been given in [34, 39]

to the effect that the result for the lightlike Wilson loop of [21] can be obtained continuously

from Wilson loops that correspond to velocities that approach v = 1 from below. The key

point is that, for any given v < 1, the authors of [21, 34] enforce boundary conditions for

the string not at the AdS-Schwarzschild boundary, but at a finite radius r = rLRW ¿ rv
(with rv the critical radius given in (2.8)). As a result of this, their worldsheet lies entirely

in the region r < rv, which is inaccessible to a string that reaches the boundary, as do the

strings considered in the present paper. This explains why the worldsheets that lead to

the result of [21] are spacelike.

Regrettably, we do not understand the physics behind this prescription. One can

envision of course situations where the choice of boundary conditions for a path integral

result in its being dominated by a saddle point with imaginary action,13 but we do not see

why this should be the case in the problem at hand. To determine the value of a Wilson

loop traced by a qq̄ pair that moves at any velocity smaller than, but arbitrarily close to,

the speed of light, the AdS/CFT recipe [23] requires the string boundary conditions (2.11)

to be enforced at r →∞, because it is only in this limit that the dual quark and antiquark

become pointlike. Since this limit is taken at fixed v, the string in question will have no

choice but to lie entirely in the r > rv region, so its worldsheet will be timelike, and the

predicted value for the Wilson loop at strong coupling will unambiguously coincide with

the result exp[iT̄ Ē(L, v)] obtained in this paper.

11To be more precise, one should take v → −1 to agree with the conventions of [21].
12One should of course remember that such strings are allowed only for separations smaller than the

screening length, which approaches zero in the high-velocity limit. For larger separations the system is

unbound, and involves two separate strings which do extend from the boundary to the horizon, but are still

quite distinct from the string considered in [21].
13A simple example is provided by the computation of the propagator for a free relativistic particle moving

across a spacelike interval.
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If the string boundary conditions (2.11) are enforced instead as advocated in [21, 34,

39], the string endpoints lie at a finite radius r = rLRW ¿ rv. In this case the path

integral for the string is indeed dominated by a saddle point with imaginary action, a

condition which has been argued [34, 39, 40] to be necessary in order to make contact

with the jet-quenching parameter defined in phenomenological models of energy loss. But

by the standard UV/IR reasoning [41], this path integral would appear to be computing

not a standard but a ‘thick’ Wilson loop, traced by sources for the gluonic field that have

a characteristic size d ∼ R2/rLRW À R2/rv ' (1 − v2)1/4/T , which according to (3.18)

happens to be much larger than the screening length at the given v. It is unclear to

us whether this ‘thick’ loop is in some way relevant to the approximate gauge theory

calculations [20] that motivated the proposal of [21]. One should not of course lose sight

of the fact that the loop becomes ‘thinner’ (in the sense that d→ 0) as v → 1, so precisely

at v = 1 one is computing a standard Wilson loop (with a string worldsheet that correctly

extends all the way to the AdS-Schwarzschild boundary). But, as already noted above,

the gauge theory basis for the definition of [21] would appear to allow a smooth approach

via standard Wilson loops with v → 1 from below, which the AdS/CFT correspondence

would compute using timelike worldsheets up to and including v = 1 (where we would

find Ē(L, v = 1) = 0). Perhaps a more useful characterization of the v = 1 Wilson loop

computed in [21] is as a smooth limit of standard Wilson loops with v → 1 from above.

Before leaving this subject, it is interesting to note that the Ē ∝ L2 dependence

that was called for in the definition of q̂ proposed in [21]— a dependence that was suc-

cessfully obtained in that work using the spacelike worldsheets discussed in the preceding

paragraphs— can also be coaxed out of the v → 1 limit of the timelike worldsheets ana-

lyzed in this paper, by focusing not on the stable but on the metastable (dashed) portion

of the Ē(L, v) curves of figure 4 that lie near the intersection with the Ē axis. This region

corresponds to configurations with small separations and small applied external forces,

fy ¿ 1. Using this condition it is straightforward to infer from (3.3) and (3.4) and that,

at next-to-leading order in L,

Ē(L) =
T (g2

YMN)
1
2

4

[∫ 1

hmin

γ
√
h− v2dh√
h(1− h)

5
4

−
∫ 1

0

dh

(1− h)
5
4

]
(3.21)

+
L2T 3π2(g2

YMN)
1
2

2
γ

[∫ 1

hmin

dh

(1− h)
1
4

√
h(h− v2)

]−1

,

i.e., the energy depends quadratically on the q-q̄ separation, as desired. In the limit v → 1,

this relation implies

Ē(L) =

√
2

4

[
−(1− v2)−1/4A+ (1− v2)−3/4KL2

]
, (3.22)

A =
8π3/2

Γ(1/4)2

√
g2

YMNT , K =

√
π

4
Γ(1/4)2

√
g2

YMNT
3 ,

where the numerical prefactor in the first equation has been chosen according to the nor-

malization used in [21], in order to make K directly comparable to q̂. Independently of
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whether or not there exists some argument relating the coefficient K to the jet-quenching

parameter as defined in phenomenological models [19, 20], this calculation shows that the

information encoded in the parameter q̂ defined in [21] can also be accessed using the

timelike worldsheets studied in the present paper. This is especially interesting in view

of the fact that in the v → 1 limit, such worldsheets never wander far from the AdS-

Schwarzschild boundary. Due to the conformal invariance of the underlying gauge theory,

the temperature-dependence of the parameters K and q̂ was bound to agree. The agree-

ment in their ’t Hooft-coupling dependence is also not particularly surprising. What is

perhaps worth noting is that the numerical coefficients are practically equal,

K = (Γ(1/4)4/16π2)q̂ ≈ 1.1q̂.

In the absence of a direct gauge (or string) theory link between these two parameters, it

might be worth exploring their relation in other gauge theories with known gravity duals.
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